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DYNAMIC LINEAR MODELS WITH LEADING INDICATORS 

by 

Jingxian Chen 

Abstract 

This thesis proposes a dynamic linear model (DLM) to deal with the problem of 

forecasting with leading indicators. We call this type of a DLM as a dynamic linear model with 

leading indicators. Our approach expands the conventional one-dimension DLMs to the two- 

dimension case. Analyses of some real data sets which initially motivated us to explore our 

approach, are used as applications. For reasons of confidentiality they have been coded as Data 

Set One, Data Set Two and Data Set Three, respectively. Our approach has a much wider field 

of application, for instances, the two-dimension filter problems in image processing, and 

estimation problems related to Markov random fields. 
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1. INTRODUCTION AND OVERVIEW 

The problem addressed in this thesis is to expand upon the dynamic linear model (DLM), 

such that it can deal with leading indicators. It is motivated by the analysis of three time series 

data sets listed in Tables 1.1 - 1.3, whose plots are shown in Figures 1.1 - 1.3. Each data set 

involves several series; for example, Data Set One consists of six series. From those plots, 

particularly from Figure 1.1, one can perceive that there may exist a pattern common to all the 

series within the set. For instance, all the six series of Data Set One reveal an 'S' shaped pattern. 

This phenomenon motivates us to think of introducing a leading indicator series into the DLM to 

improve the forecasts of a series of interest. For example, if we want to forecast series 6 of data 

set one, we may want to use data from not only series 6 but also series 1 to 5 to improve the 

forecasts of series 6. 



Table 1.1   Data Set One 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

Series 1: Yi 

yl,t 

0 

0.2 
3.3 
8.5 

14.5 
22.7 
34.5 
48.2 
64.2 
81.8 

101.2 
123.7 
148.0 
169.4 
194.3 
217.2 
233.9 
252.1 
266.0 
278.9 
289.6 
298.9 
306.0 
312.0 
316.7 
320.1 
322.6 
324.3 
325.3 
326.3 
327.7 
328.2 
328.4 
328.6 
328.8 
328.9 
329.0 
329.1 
329.3 
329.0 

Series 2: Y2 

*2,t 

0 

0.3 
1.4 
3.5 
6.1 

10.2 
14.7 
20.9 
28.5 
37.2 
46.2 
56.6 
68.3 
81.5 
92.8 

103.3 
112.0 
120.7 
129.0 
135.9 
141.6 
146.5 
152.6 
153.6 
156.0 
157.6 
158.7 
159.4 
159.9 
160.4 
160.5 
160.7 
160.8 
160.9 
161.0 
161.1 
161.2 
161.2 
161.3 
161.3 

Series 3: Yo 

*3,t 

0 

3.9 
7.2 

12.1 
18.1 
26.2 
36.6 
49.9 
64.7 
81.6 
98.6 

123.2 
146.6 
171.3 
194.0 
214.5 
232.1 
248.0 
260.8 
273.5 
284.7 
293.7 
300.9 
307.7 
298.0 
317.6 
319.9 
320.9 
321.8 
322.7 
323.3 
323.9 
324.1 
324.2 
324.4 
324.5 
324.6 
324.7 
324.7 
324.7 

Series 4: Yi 

Ht 

0 

0.8 
3.0 
7.1 

12.7 
20.1 
29.0 
40.9 
56.6 
72.4 
89.7 

Series 5: Y^ 

111.9 
134.4 
156.4 
181.2 
199.9 
215.3 
233.2 
248.5 
262.6 
273.4 
281.4 
288.4 
294.2 
298.5 
301.8 
303.3 
304.1 
304.8 
305.4 
305.9 
306.2 
306.3 
306.5 
306.8 
307.0 
307.0 
307.1 
307.2 
307.3 

'5,t 

Series 6: Yg 

fyt 

0 

0.8 
2.7 
5.8 
9.8 

17.2 
26.4 
39.1 
53.2 
70.0 
88.4 

108.8 
131.8 
157.4 
184.4 
211.5 
231.0 
250.8 
270.2 
285.1 
299.8 
312.0 
320.7 
327.9 
334.4 
338.9 
342.1 
341.9 
346.5 
344.9 
346.3 
349.3 
350.6 
351.0 
352.1 
352.7 
353.3 
353.3 
353.7 
352.2 

0 

0.5 
2.0 
5.4 

10.0 
17.1 
27.9 
39.7 
57.0 
75.6 
95.0 

116.8 
141.6 
170.6 
199.4 
222.3 
225.8 
260.8 
276.1 
293.6 
305.2 
314.4 
322.8 
330.2 
337.6 
341.7 
345.8 
346.5 
348.4 
350.2 
351.7 
353.3 
354.8 
356.4 



fct 

30 

2SÖ 

2a 

ISO 

MO 

so 

hi 

S 10 If 2D 25- 30 3$ 46 

Figure 1.1   A Plot of Data Set 1 



Table 1.2   Data Set Two 

Series 1:   Y^ Series 2:  Y2 
Series 3:   Yg 

t 
yl,t ^2,t ?3,t 

0 9.337 8.43 9.181 

1 20.53 22.35 20.78 

2 30.35 38.48 29.05 

3 40.29 53.58 37.29 

4 50.47 67.14 45.53 

5 61.08 79.02 52.25 

6 71.49 89.23 58.09 

7 81.74 98.49 63.5 

8 92.39 107.2 68.35 

9 103.1 115.2 72.95 

10 114 122.9 77.34 

11 124.7 130 81.7 

12 137.9 137.9 86.5 

13 145.3 141.9 89.01 

14 153.1 145.8 91.87 

15 161.3 149.3 94.27 

16 170.3 152.8 96.71 

17 179.6 156.5 99.45 

18 189 160.3 101.8 

19 198.7 164.2 104.2 

20 208.7 168.4 

21 218.7 172.8 

22 228.5 177.5 

23 238.8 182.8 

24 249.1 188.2 

25 258.8 193 

26 268.2 198.1 

27 278 203.4 

28 288.3 207.9 

29 299.1 212.8 

30 309.9 215.1 

31 321.5 
32 334 

33 346.6 

34 359.8 

35 372.2 

36 385.3 

37 395.9 

38 406.1 

39 416.1 



Figure 1.2   A Plot of Data Set 2 



Table 1.3   Data Set Three 

Series 1:  Yj Series 2:  Y2 
Series 3:   Yg 

t 
yl,t *2,t y3,t 

0 .862 .119 .131 

1 
2 
3 
4 
5 

3.467 
6.36 
8.902 

10.93 
12.46 

.21 

.291 

.347 

.434 

.525 

.266 

.355 

.45 

.543 

.63 

6 
7 
8 
9 

10 

13.78 
14.96 
16.05 
17.15 
18.48 

.586 

.682 

.738 

.802 

.87 

.693 

.752 

.814 

.845 

.915 

11 
12 
13 

19.8 
21.21 
22.28 

.937 

.994 
1.042 

.974 
1.098 
1.162 

14 
15 

23.32 
24.17 

1.087 
1.142 

1.196 
1.196 

16 
17 
18 
19 
20 

25.06 
25.76 
26.57 
27.39 
28.27 

1.186 
1.244 
1.285 
1.339 
1.383 

21 
22 
23 

29.09 
29.92 
30.74 

1.403 
1.428 
1.55 

24 
25 

31.68 
32.53 

1.59 
1.662 

26 
27 

33.31 
33.97 

1.725 
1.725 

28 34.68 

29 35.42 

30 36.13 

31 36.98 

32 37.81 

33 38.76 

34 39.55 

35 40.32 

36 41.25 

37 42.08 

38 42.7 

39 42.92 



Figure 1.3  A Plot of Data Set 3 



In Section 2 we overview the DLM. We propose the DLM with leading indicators in 

Section 3. Section 4 pertains to applications. In Section 5 we briefly discuss our future work. 

Details of the forecasting formulae of the DLM with leading indicators are in the Appendix. 

2.  OVERVIEW OF DLM 

DLMs, also known as Kaiman filter (KF) models, are models from which a large number 

of useful forecasting schemes can be derived as special cases [cf. Harrison and Stevens (1971, 1976) 

or West and Harrison (1989)]. In what follows, first we review the general model and forecasting 

formulae of the DLM, then we specify some particular KF models pertaining to processing our 

data analysis. 

2.1   General Form and Forecasting Formulae of DLM 

The DLM is often specified as 

rYt = F't0t + ut, 
I (2.1) 

K = Gt 't-1 +   wt' 
where 

6t        is the parameter vector of the system at time t and it is unobservable 

Ft        is the known dynamic regression vector at time t, 

Gt       is the known state evolution matrix at time t, 

ut        is the observation error at time t, 

wt        is the system error vector at time t, 

Yi, . ■ • , Yt . . .  is the observed series. 

The first equation is called observation equation and the second one is called system equation. 



Kaiman (1960) has obtained the recursive equations and the predictive distributions for 

the DLM of form (2.1) under the Gaussian set-up.   Kalman's results are summarized below. 

Let "X ~ N(/i, er2)" denote the fact that X has a Gaussian distribution with mean n 

and variance <r . 

If ut ~ N(0, Ut), wt ~ N(0, Wt), the sequences {ut} and {wj are mutually 

independent, the prior of 0Q (before observing any data from the time series) is N(m(), CQ), then 

i)     (*tlyt) ~ NK-Ct)' (2'2) 

where yt is the observation set (yp y2, • • • , yt); i-e- the realization of Yp ... , Yt, 

mt  =  Gt int.! + Rt Ft Q^1 (yt - ¥[ Gt m^), 

ct =  Rt - *t Ft F't K Qt1' 

»t = Gt ct-i G't + wt> 

Qt = F't *t Ft + ut; 

")        (Yt+k I ?t)  ~ N(ft+k' ^+k)'        for   k=1' 2' • • • (2'3) 

f
t+k = n+k^+k^+k-i-^t+i-t'and where 

°2t+k =   Fi+k Gt+k Gt+k-l ••• Gt+1 Ct Gi+1 ••• Gt+k-l G't+k Ft+k 

+ n+k f S (Gt+k- • -Gt+i+i) wt+i( Gt+k- ■ -Gt+i+i)'+wt+k) Ft+k 

+ u, t+k' 

Smith and West (1983) have studied the case wherein Ut and Wt are not fully specified, 

and their results are given below. 

If (ut | U) ~ N(0, U), and the prior of U is an inverted gamma with shape parameter 

nQ/2 and scale parameter d0/2, (wt | Ü)   ~   N(0, ÜW*), (*„ | U)   ~   N(mQ, UCg), with W* and 



Cn specified, and if given U the sequences {ut} and {wj are assumed mutually independent, then 

(*tlyt) ~ TntK' Ct)' (2'4) 

where Tn (nu, Ct) denotes the multivariate student-t distribution with nt degrees of freedom, 

mode im and scale matrix Ct, with 

mt  =  Gt int.! + Rt Ft Q;1 (yt - F£ Gt m^), 

Ct  =  d^7n^ (Rt " *t Ft Ft "W dt-l/nt-l 

*t  =  fe (Gt Cjli GJ + Wt*), 

Qt = fe + Ft *t Ft - 

nt = nt-i + x> 

dt  =  dt.! +  n^ (Yt - F't Gt «Vl)2/Qt > 

Ct = ^ c, 

In this case, the k-step ahead predictive distribution is also a univariate Student-t distribution 

with m degrees of freedom, mode f^ , ^ and scale v^^ where 

ft+k  =  FUk(Gt+kGt+k-l---Gt+1)mt, 

^t+k = Fi+k Gt+k Gt+k+l ■•• Gt+l) Ct Gt+k "• Gi+k-l Gi+k) Ft+k 

+ i (1 + n+k (W*+k + £ (Gt+k -. Gt+i+1) W*+i(G;+i+1- Gj+k)) Ft+k), 
1 i=l 

for  k=l, 2, . . .   . (2-5) 
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Hence, a general application of DLM to a practical forecasting problem consists of two 

tasks: i) a specification of a particular form of (2.1), and ii) a specification of the distributions of 

the errors and the prior of 0„ to set the forecasting conditions in one of the preceding two 

schemes. 

2.2  Growth Models 

Because of the trend feature in all the three data sets, we will concentrate on the 

specification of growth models. 

Growth models are a class of special DLMs. A growth model can be described by two 

parameters 0t and ßt at time t. The former is often called "level" and the latter called "change 

of level" or "slope."   In terms of model (2.1), the growth model is defined as 

-1 
- 

ßt 

1 vt, 
•t = > Ft = 0 

> wt = 
wt 

L-      -1 *-         -* 

and    Gt 

(2.6) 

Alternatively, it can be written as 

Yt=   h     + ut, 

I   h  =   *t-l + ^t-1 + vt' 

ßt = Mt-i       + wt • 

Specifically, we use the following three growth models to analyze our data sets. 

1)    Linear growth model 

This is the simplest case of growth models. Here, Kt is always specified as 1. This 

model has been found suitable for dealing with data having a linear upward trend; for 

instance y«». in data set 3. 

11 



2)    Segmented linear growth model 

Examine the plots of data set 2 (Figure 1.2).   All the three series show an upward 

trend, but the trend changes at its slope about t=13.  Therefore, Kt is specified as 

Kt  = 

1, if t #  13, 

I. 0.9, if t = 13. 

In general, if the change point of the trend is at tQ, the specification of Kt is of the 

form 

Positive constant ( ^ 1) ,    at t=tg. 
Kt 

3)   S-shaped growth model 

This model is suitable for data set 1; such data shows a trend in three stages: at 

first, for t < 12, the growth rate appears increasing, then it appears to be constant, 

and finally, for t > 16, it decrease and tends to zero. In effect, the trend is an S- 

shaped one.  Thus for data set 1, Kt is specified as follows: 

1.15, ift  <  12, 

1, if 13  < t 

0.85, ift  >  16. 

Kt =  <   1, if 13  < t  <  15, 

The specification of Kt for a general 'S' - shaped trend is 

C^   (constant   >   1),       if t   < tp 

Kt =  <   1 .       if tx  < t  < t2, 

C2  (constant  €(0,1)),    ift  > t2, 

where ti, t2 are terminals of stages 1 and 2. 

12 



3.  DLM WITH LEADING INDICATORS 

Now we start our expansion of the DLM.   Before doing so, we need to introduce a more 

elaborate notation.   Let 

Y» denote an observation on the £-th series at time t, 

e„. is a state parameter, standing for the level of the £-th series at time t, 

is the other state parameter, reflecting the change of the level of the 
^ 

£-th series at time t, 

is the observation error of the £-th series at time t, u£,t 
v„     and we    are the system errors of the £-th series at time t, corresponding 

to parameter 0g t and /?g t, respectively. 

3.1   The Forms of DLM with Leading Indicators 

Without loss of generality, let {Y2t} be the series of interest and {Y^J be the leading 

indicator series. Assuming a growth model, we introduce a weight 7 to incorporate the effect of 

the indicator series in the series of interest.   The following two forms can be considered. 

1)   Weighted on level, 0., t 

For the leading indicator series, we have, as before 

Yl,t   =   *l,t     +    "l,f 

[ *i,t = Vi+ ^t-i + vi,t' 
ß\,t = Kt^i,t-i + wi,t; 

and for the series of interest, we have 

f Y2,t  =  Ö2,t     +    u2,t- 

*• *2,t  =  ^2,t-l + (!-T) h,t + v2,t 

2)  Weighted on slope /?., t 

( Yi,t = h,t   + *i,f 

(3.1a) 

(3.1b) 

»l,t  =  öl,t-l + ßlM   + Vl,t • (3-2a) 

%,t  =  Kt "l.t-1 + wl,t "' 

13 



*2,t 
Ö2,t 

*2,t  = 

'2,t +    u 2,t' 

flo *  i  + 09 t.-1    + v2,t 2,t-l T ^2,t-l 

7Kt ^2,t-l + (X-T) ^l,t + w2,t 

(3.2b) 

As said before, for Data Sets Oae, Two and Three, the linear growth model, the 

segmented linear growth model and the S-shaped growth model are adopted respectively. For all 

three data sets, the second form performs better than the first one. 

The assignment of weight 7 is subjective; it is based on the forecaster's belief in the 

chosen model to describe the series of interest, and the potential benefit from the use of 

information from the indicator series. For example, if 7=1, Yj_ does not play any role and (3.1a) 

is reduced to a steady model, whereas (3.2a) is reduced to a conventional growth model. 

In general, if we partition the parameter vector 0 t as 0 t 

>(2) KMT 

»(1) 

$ 

with fl'y being the 

state parameters specific to the series of interest and 0)t> being those state parameters containing 

"pattern information" common for all series. Then the general expression of the DLM is of the 

form 

Y£,t = Ft 9t,t + u£,t > 

ö«,t = H£,t et,t + Je,t °iri,t + w«,t' 

where 

(3.3) 

H £,t 

G<U>  G<12> 

421)   VP2» 
J£,t  - 

0       0 

0 (i-re) 

14 



G<»> G[12»   " 
Gt = 

GP) Gf»   _ 

«,t = «1? 
1 

partitioned corresponding to 

r„ is a diagonal matrix with entries taking values between 0 and 1, when £-1, 1^ - L 

3.1.1   Relationship to a 2-Dimensional KF Model 

A two-dimension KF model is often defined as 

Y£,t = Ft h,t + ni,t • 
(3.4) 

[cf Habibi (1972), Woods and Radewan (1977), Woods and Ingle (1981), Katayama and Kosaka 

(1979), etc.]. In this sense (3.3) can be regarded as a special case of (3.4) with K^t = 0. From 

l, we call this expansion form of the DLM as the DLM with leading indicators. now on, 

15 



3.2   Inference and Forecasting Formulae 

Let us consider a simple example of the DLM with leading indicators to demonstrate our 

method by which we solve the inference and forecasting problem of the DLM with leading 

indicators.   Then, we write down the general inference and forecasting formulae. 

3.2.1  An Example of the DLM with Leading Indicators 

Suppose that observations yx v y12, y2)l> v2,2 are available and Predictions Y2,3 and 

Y9 4 are requested.    Assume the suitable model is (3.2) and the priors for 61Q and ßlQ are 

(*10|U)  ~  N(m10,UC10), (/?1)0|U)  ~  N(b1Q, U<T10), (u.,t|U)  ~  N(0, U), (v., 11 U)  ~ 

' n0 
N(0, UV), (w.,t | U)  ~  N(0, UW), the prior of U is an inverted gamma with parameters -y and 

-Q.   We also assume the same independence conditions as we deal with the DLM [cf. West and 

Harrison (1989)].   Besides, we assume that $2fi = 0lfi + s^ 92fi = ßlfi + s2 where s^nd s2 are 

known constants.   Under these assumptions follow from (3.2a) 

*i,o = h,o' ^i,o = ^i,o > 

h,i = *i,o + 01,0 + vi,i' ^i,i = ki"i,o + wi,i • 

«1,2 = *1,0 + (1+kl)^l,0 + vl,l + wl,l + Vl,2 ' 

1*1,2 = k2kl^l,0 + k2wl,l + wl,2 - 

*1,4 = °lfi + (l+ki(l+k2(1+k3)))^l,0 + vl,l + (l+k2(H-k3))w11 + vlj2 

+ (1+k3)wl,2 + vl,3+ wl,3 + vl,4 ' 

ßl4 = V-.k^^o + k4k3k2Wl)1 + k4k3w12 + k4w13 + w1)4 , 

Yl,l = *1,0 + 01,0 + vl,l + Ul,l ' 

Yl,2 = 91,Q + (1+kl^l,0 + vl,l + wl,l + vl,2 • 

16 



Alternatively, it can be represented in the matrix form (G[, YIV Y^Y -LZ 

where Ox =    (9lfi ßlfi *u ßu *1)2 ßlf2 *i,3 ^1,3 *i,4 hß . 

1 

0 1 

1 1 1 

0 kl 0 1 

1 l+k1 1 1 1 

0 k2kl 0 k2s 0   1 

1 l+kj+k^ 1 l+k2 1   1 1 

0 KoK^K-i S 0 k3k2 0 k3 0 1 

1 l+k1(l+k2(l+k3)) 1     l+k2+k2k3 1  l+k3 1 1 1 

0 k4k3k2k1 0    k4k3k2 0 k4k3 0 k4 0 1 

! 1 10 0  0 0 0 0 0     1 

! i+k. 11 10 0 0 0 0     0     1 

Z = 01,0 ^1,0 vl,l wl,l vl,2 wl,2 vl,3 wl,3 vl,4 wl,4 ul,l ul,2 1' • 

Assume that (Z | U) ~ N(/i, USQ) , U ~ IG( ^,   -£ ). Then, by the properties of the multivariate 

normal distribution, we can obtain 

(*i,o- "i,o« - «'I,* "1,4iu- yi,i' yi,2) ~ N(Mi' UEi}' 

(1) 
(fll,0' ^1,0' ••• ' fll,4« 01,4 I yi,l' yl,2)  ~ Tn0+2(M1' 5^+2 El}' 

n0+2    d(l) 

(U I vl,l' ^1,2)  ~  IG( ~T~ ' ~T~ ) ' 

17 



where M,, Ei, d^ can be calculated out (for brevity, we omit the formulae for calculating Mj, 

Similarly, (3.2b) offers a tool to obtain the relationship between (02)(j> /?2,0' '" ' ^2,4' 

02,4' Y2,l' Y2,2> Y2,3' Y2,4) and (öl,0- ^1,0' - ' V ^1,4' v2,l' w2,l' - ' v2,4' w2,4' u2,l> 

••• , u2 4), and we can get the predictive distribution (Y23, Y24 | y11, y12, y21, y22) in which 

the leading indicator series {Yj J is incorporated. 

3.2.2   General Formulae 

Let n be the forecast horizon; 

letYP = [Y£>1).-,Y£jt]'andyP = y£)t [y «,,-■-, y^ t]' be a realization of Y^ (1) 

Y£,n~ 
Y12) 

let 41) = [u£1, ••• , u£t]', uj2) =   K,t+1' ■•' ' U«,J'' u£,n 
41} 

42) 

eg = [%, *£,i> - • '«/• * = [*i.0' *i,i' -' "U'" 

Let y£ , denote all prior information (including the data) before observing any data from 

series Y«. 

For model (3.3) consider the two scenarios described below. 

Scenario   A:        Let    (* | yQ) ~ N(/i,    S),    uln ~ N(0,    Uln)   sequences    {ult},    {wlt}    are 

independent,   jx,   E,   U1 n   are   known;   assume   that   after   filtering   £-1   series, 

18 



£=2, 3, ... , (eiA I yM) ~ N(mM, CM) has been obtained and that u£n ~ 

N(0, U£n), w£n ~ N(0, W£n), sequences {u£t}, {w£J and {6£.lt | yM} are 

mutually independent, (6£() | yM) = (6£.10 | y£+1) + s£0 with 8£0 known, U£n 

and W£    are also known. 

Scenario B: Let (*|y0, U) ~ N(/i, US), (u1>n | U) ~ N(0, ÜUljn), given U sequences {ult}, 

{wx J are independent; /i, £, Uln are known, Ü is unknown but (U | yQ) ~ 

jGf^M t _^2) . Assume that after filtering £-1 series, £=2, 3, ... , (6£.11 y£.p U) 

~ N(mM, UCM) and (U | yM) ~ K3(-^ , ~|^) have been obtained; we also 

assume that (u^ | U) ~ N(0, UU^J, (w£n | U) ~ N(0, UW£n), given U, 

sequences {u£ J, {w£t} and {0g_lt \ y^} are mutually independent, U£Q, W£n 

are known, (0£O | y^,  •) = (^.1)0 I yM,  •) + s£)0 with 8£0 known. 

We have the following formulae for inference and forecasting. 

1)   For Scenario A 

The inference and forecasting formulae of series 1 are 

i) 

el 
mel 

yjl) H ~N myi.i 
? 

yfO 
myi.2 

_ . . 

je l 
c, 

ivi.i     »1*1.2 

cyLi^i Cvi.i       cyi.i2 

cyi.2öi Cyi-2i    Cyi-2 

(3.5) 

where 
(m.. 

m/] L /*, m 
n.i 
yi.2 

=  *""%> 
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C      -LEI/     fCyi1 Cyi 
c*i " LEL' Vcyi.2i   °y 

L12V  F'C.   F + U1>n, 
1.2  / l 

(c .. Q Vi.i    öiyi.2^ 
yi.iyi 

yi.2ei 

Cfl.   F, 

G1 

G2G1 G, 

Gn-Gi   Gn--G2  Gn-G3    -I 

F' = 

0 F\ 

0 Fi> 

0 F'o 

o     F; 

TO.A 

*^*«^~"{WJ'    lcyi2, 
%  V1.2 

\  %. 

(3.6) 

where m, >x    = mö1     + 
cöiyi! (^Li)"1 (?i,t - myi.i}' 

^1.2 = m^i.2 + Cyi.2i (cyi.i)_1 (yi.t_ myi.i}' 
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7i      _*iyi.2> 
cyi.2öi Cyi-2 j 

ca    c, 
c 
h    hn.2\   / hy\ 
y\.2l iS's)- (cyi.2i) cy"i.i (cyLi*i ^1.12); 

iii)  specifically, the k-step ahead predictive distribution is 

(Yi,t+k I ?o« ?i,t) ~ N(At+k> £t+k, t+k)      for k=1' - -n_t' 
(3.7) 

where ™t+k 1S the k"th comPonent of ™yi 2' 

ct , k  t+k is the k-th diagonal entry of Cy     . 

Recursively, for series t, 1=2, 3, ... , we have 

i) 

e„ 

(i) 

2) 

U-\ N m, 
y«.i 

m. 
y«,2 

S      cVo   V^ 

cy«.iö£   Cy«-i    Cy«-i2 

CVLlh     Cy«-21       Cy«.2 

(3.8) 

where 
m, 

m0,, = L£ m£-l + 8£'  1 m 
y«-l     - F' m 
yJ-FmV 

C0„ _ L£ CM L£ + M£ 
0 

w„ M/7 

Ca .,     J  —   F Cfl _ , v«y 7£ 
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yj.i   JL12) = ¥,Ca F + U^, 

S.21    °y£.2 
di * "■" v£,n 

L„ = 

I 

H£,l 
H£,2 H£,l 

H£,2J£,1 7,2 

H£,rTH£,l       H£,n-H£,2J£,l     H£,n" H«,3J£,2    -     J£, 

F  is specified as the same as  in (3.5), 

I 

H£,l 
H£,2  H£,l 

H£,n'H£,l 

8£,0 

M£ - 

I 

H£,l 
H£,2 H£,l 

H £,2 

H£,n-H£,l       H£, n"H£,2 
H£,n"H£,3  ""   1 

e 
C2V J-l-V i«,t}      '  \\ ihv       /'If' C 

Y^ VV    y«.2/      V°y£.2*£     S.2 
»)   (    (2) I ?M' ?«,t ) ~ N (3.9) 

where 
-1 

%  +   °Vu (<W   (?£'4 " my^}' 
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?£.2 y«-2 
+ cy«.2i «W1 {y^ " myo}' 

S       V«.2v       , °'« V«.2v       /Vl 

SyÄ.2  '    V cy|.2*£ 
Cy£.2        

VCy*.2i 
S1!^.! c_); ^  y£.i2 

iii)     the k-step ahead predictive distribution is 

(Yi t+k I %v ?£,t) ~ NK+k > et+k, t+k)  for k=1> 2> - ' »-'• 
(3.10) 

where At+k    is the k"th comPonent of &y« o ' 

ct+k  t+k     is the k-th diagonal entry of  Cy^ ^ . 

2)   For Scenario B 

The inference and forecasting formulae of series 1 are 

i) 

el 
m9l 

Y11} 
y0'

u ~N myi.i 
,u 

y^2) 
myi.2 

_ . . 

Jh        *iyi.i     h?\.i 

Cyi.i*i Cyi-i    Cyi-i2 

cyi.2öi Cyi-2i   Cyi-2 

(3.11a) 
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r 1 - • ■ 

el h 

Y(l) h ~Tni,o myi.i 

dl,0 
'    nl,0 

Y!2) my
i.2 

_ - . 

Qh     chn.\ chn.% 

cyLi*i Cyi.i    Cyi.i2 

cyi.2öi Cyi.2i Cyi.2 

where all submatrices are specified as the same as in (3.5); 

,(3.11b) 

/ nl t    dl t\ 
Ü) (u|y0.yi,t) ~ IG(^'-f-J 

(3.12a) 

ma 

(Y^I?O.?1,,U)~NI m 
U 

yi.2 

*i      hy\.2 (3.12b) 

(^)l?0'yi't)~Tnl. 

m/i dl,t ( % 
Jhn.2 

'   n-i tU\2i'   "^VS^!     Cy1.2 
(3.12c) 

where nljt  =  n10 + t, dljt   -  d1)0    + d'lt , 

di,t = (?i,t - myL1)' (Cyi./1 <?i,t - myi.i} 

all submatrices are specified as the same as in (3.6); 

iii)    specifically, the k=step ahead predictive distribution is 

(Yl.t+klyO'yi1*)  ~ T*1)0
(lilt+k'  51^ £t+k,t+k) H'^v   *a.v).   for k=l, ... , n-t, (3.13) 

where m[^k    is the k-th component of ^y12 
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c. ,,    t , k     is the k-th diagonal entry of Cy 

Recursively, for series £, £=2, 3, ... , we have 

i) 

1- -1 " - 
e< h 

tf> ?M> U ~N y£.l 
,u 

Y?> y£.2 
_ L - 

ch     %LI  Vo 

Cyo*£ ^«.I     
Cy«- 12 

Cy12^  Cy£.21      °y£.2 

(3.14a) 

Y(2) 

y£-l 'n£,0 

Btt/i 

m y£.l 

m y£.2 

2£,0 
^,0 

C*£        Vu   Cf?£y£.2 

Cy£.lÖ£   Cy«-1       Cy«-12 

Cy£.2Ö£   Cy«-21     CyL2 

where all submatrices are specified as the same as in (3.8); 

n)  (U | yM, y£>t ) ~ IG ^ -y- , -y-J 

, (3.14b) 

(3.15a) 

Q)I?"'^,U)~NI 
m/i C 

m y£.2 
, u 

cyL2h   Cy£.2 

(3.15b) 

where 

e 
Yf (J^-i'^t)  ~T 

d
£,t (ce 

n£,t     A y£.2 
£,t   \    C»„      a    O 

Ö£y£.2 

y£.2
Ö£ ^y£.2 

n£,t   _  n£,0 + tj d£,t  =  d£,0    +d£,t' 

(3.15c) 
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4,t = (?£,t - my£.i
y (S.irl (?«.t" "W" 

all submatrices are specified as the same as in (3.9); 

iii)    the k=step ahead predictive distribution is 

(Vy+k I Uv rf") ~ *•«,, (*Hk- ^ Vk, «+k> • f» *='•2 -'■     <3'16> 

where mt+k , ct+k  t+k are specified as the same as in (3.10). 

It can be shown that equations (2.2) - (2.5) are merely the marginal distribution of (3.6) 

and (3.12c) respectively. Since the DLM with leading indicators deals with the series of interest 

in conjunction with indicator series, any assumption on the independence of 0^ and 0£t is 

irrelevant. The only way to treat the correlations among all state parameters, is to represent the 

probabilistic structure of the DLM or the DLM with leading indicators, and the mechanism of the 

filtering procedure, in terms of the joint distribution of the state parameter space. 

4.  APPLICATIONS 

We apply our approach to the data given in Section 1. 

If the sequence [yv y2, ... , yt, yt+1, - , yj is observed from the time series of interest 

and we were to use the first t observations to predict the next m-t values , then we specify the 

cumulative square error (CSE) as 

m-t „ 
csE(m,t)= £ (yt+k-E(Yt+klyt)r. 

k=l 

where (Y,   d yt) is the k-step ahead prediction based on observations yt. We use CSE to measure 
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the forecasting performance of our approach. The smaller the CSE(m, t) is, the better the 

forecasts will be since CSE(m, t) reflects the total loss of the (m-t) forecasts when the loss 

function is a quadratic function. 

We select an S-shaped growth model, a segmented linear growth model and a linear 

growth model to analyze Data Sets One, Two and Three respectively. We set the conditions for 

data analysis in the scheme described as scenario B.   Specifically, for the DLM, we specify the 

initial conditions as 

the prior distribution of U is an IG (2.5, 1),  i.e.  nQ = 5, dQ = 2; 

(vt | U)  ~ N(0, 0.01 U); (wt | Ü)  ~ N(0, 0.2 U); 

(0O I y0, U)  ~ N(Y0, 0.01 U);   (ßQ | y0, U)  ~  N(yx - Y„, 0.1 U); 

Y0 is assumed available; (0Q | yQ, U)  is independent of (ßQ | yQ, Ü). 

Analogous to the above specification, the initial conditions for the DLM with leading 

indicators are 

0;]i^u)~ 4j-U; ü(°'01 °0l))' (u'?1-o) ~,G<2'5,1); 

(v£ t I U)  ~ N(0, 0.01U); (w£jt | U)  ~ N(0, 0.2U). 

Part of our analysis results are listed in Tables 4.1 - 4.4.   These results show that the use 

of DLM with leading indicator can improve forecasting significantly, incorporation of two or more 
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indicator series may not be more effective than incorporation of one indicator series (cf. Table 

4.2). Table 4.4 offers an example to assign the value of 7 intuitively. From Figure 1.3 the data 

plot of series Y3 looks quite similar to that of series Y2- So a small 7 (namely, 7 = 0.05) leads to 

much better forecasts than a bigger one (7 = 0.975 here). It also gives us an idea of how the 

variances of the predictions will be if the assignment of dQ is not appropriate. In this case dQ = 2 

»  d\ = 0.005684   (when 7 = 0.975),   E(Y40| y10) = 2.4977   , V(Y40|y10) = 63.0757 . If we 
t 

shrink dQ from 2 to 0.05, the above variance will reduce to its 1/40 of the current values and the 

mean remains unchanged. 
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Table 4.1    A Comparison of Forecasts of Y3 of Data Set One Series 
from the Growth Model and from the 2-d Model (7 = .05) 

Observation 

21 293.7 

22 300.9 

23 307.7 

24 298.0 

25 317.6 

26 319.9 

27 320.9 

28 321.8 

29 322.7 

30 323.3 

31 323.9 

32 324.1 

33 324.2 

34 324.4 

35 324.5 

36 324.6 

37 324.7 

38 324.7 

39 324.7 

Forecasts from S-shaped Growth Model 

CSE 

d^ 20 

mean 

292.51 

299.71 

305.83 

311.04 

315.46 

319.22 

322.42 

325.13 

327.44 

329.41 

331.07 

332.49 

333.70 

334.72 

335.59 

336.96 

337.50 

337.95 

338.34 

variance 

11.65 

18.77 

29.40 

43.59 

61.19 

81.99 

105.72 

132.09 

160.80 

191.59 

224.21 

258.42 

294.02 

330.80 

368.62 

407.32 

446.79 

486.91 

527.59 

1313.48 

Forecasts from the DLM with leading 

indicators (Indicator series:   Y^) 

111.567 

mean 

293.98 

301.44 

307.45 

312.15 

315.70 

318.30 

320.16 

321.51 

322.54 

323.34 

323.91 

324.29 

324.53 

324.7 

324.82 

324.92 

325.02 

325.11 

325.18 

variance 

208.408 

5.25 

6.27 

7.19 

8.02 

8.78 

9.51 

10.21 

10.92 

11.62 

12.32 

13.03 

13.74 

14.45 

15.17 

15.88 

16.59 

17.31 

18.16 

19.60 

39.006 
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Table 4.2   A Comparison of Forecasts of Yg of Data Set One from 
the Growth Model and from the 2-d Model (with 7=.05) 

Forecasts from S-shaped 
Growth model 

Forecasts from the DLM with leading ndicators 

Indicator series:  Yg Indicator series:  Y^ and Y^ 

t Observation mean variance mean variance mean variance 

21 314.4 316.13 38.80 317.96 11.95 317.62 14.84 

22 322.8 325.57 62.49 327.67 14.31 327.11 17.61 

23 330.2 333.60 97.87 335.46 16.47 334.76 20.02 

24 337.6 340.43 145.12 341.55 18.42 340.85 22.20 

25 341.7 346.23 203.73 346.08 20.20 345.39 24.27 

26 345.8 351.17 272.99 349.27 21.89 348.52 26.29 

27 346.5 355.35 351.98 351.47 23.54 350.55 28.30 

28 348.4 358.91 439.79 353.14 25.17 352.30 30.31 

29 350.2 361.94 535.40 354.39 26.81 353.42 32.33 

30 351.7 364.51 637.91 355.63 28.45 354.65 34.34 

31 353.3 366.70 746.51 359.97 30.10 356.08 36.35 

32 354.8 368.56 860.41 358.22 31.76 357.32 38.36 

33 356.4 370.15 978.94 359.28 33.42 358.28 40.37 

CSE 1313.48 224.58 149.56 

d20 
376.121 319.94 264 .66 
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Table 4.3    A Comparison of Forecasts of Y, of Data Set Two from the 
Growth Model and from the 2-d Model (7 = .975) 

t Observation 

Forecasts from the Segmented 
Linear Growth Model 

Forecasts from the DLM with leading indicators 
(Indicator series:  Y2) 

mean variance mean variance 

11 81.7 82.49 7.49 82.75 6.72 

12 86.5 87.15 13.50 87.58 11.87 

13 89.01 91.34 22.65 92.42 20.48 

14 91.87 95.53 36.50 97.24 33.32 

15 94.27 99.72 56.20 102.03 51.08 

16 96.71 103.91 82.88 106.80 74.41 

17 99.45 108.10 117.68 111.53 103.90 

18 101.8 112.29 161.75 116.25 140.10 

19 104.2 116.48 216.22 120.94 183.49 

CSE 437.366 839.528 

dio 35.024 45.546 
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Table 4.4    A Comparison of Forecasts of Y3 of Data Set Three 
from the Growth Model and from the 2-d Model 

t Observation 

Forecasts from the linear 
Growth Model 

Forecasts from the DLM with leading indicators 
(Indicator series:  Y2) 

7 = .975 7 = .05 

mean variance mean variance mean variance 

11 

12 

13 

14 

15 

.974 

1.098 

1.162 

1.196 

1.196 

.9677 

1.0210 

1.0742 

1.1274 

1.1807 

.4059 

.7314 

1.2883 

2.13821 

3.3428 

.9686 

1.0224 

1.0762 

1.1300 

1.1837 

.1299 

.2295 

.3961 

.6443 

.9877 

.9875 

1.0462 

1.1009 

1.1527 

1.2027 

.0880 

.1051 

.1210 

.1353 

.1484 

CSE .019 .018 .009 

d10 
.005507 .005684 .002693 
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5.  FUTURE WORK 

Our contribution in this effort on developing improved forecasting methods is the 

expansion of the DLM such that it can incorporate indicator series to improve forecasting. And 

because we have not added any additional restriction on the 2-d model, our methodology can 

work for general two-dimensional dynamic linear models provided they can be specified as 

sequential models of parametric structure. Thus, our approach has a wide field of applications, 

for instances, the two dimensional filter problems in image processing, and some estimation 

problems related to Markov random fields. 

Despite the results that we have had so far,  we need to do further work to more 

generalize our achievements.   Namely, 

1) Weight 7 can be specified as a distribution if the forecaster is not sure to specify 7 at a fixed 

value. This specification will make the use of the DLM with leading indicators much more 

difficult and complicated. However, we believe, with the help of some simulation 

techniques, say, Gibbs sampling, we can solve the forecasting problem of the DLM with 

leading indicators with weight 7 specified as a distribution. 

2) Explore new approaches to reduce the variances of the forecasts. From (3.12) and (3.15), we 

can see that the posterior mean of U - a main factor affecting the variances of the forecasts - 

is determined by the specification of the used DLM. So, another direction of our future 

work is to study new model monitoring techniques to reduce the variances of the forecasts. 
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APPENDIX 

Derivation of Predictive Distributions 

We derive here the inference and forecasting formulae given in Section 3, via some 

elementary distribution theory. Specifically, we need to apply the following well-known 

propositions pertaining to the properties of the multivariate normal distribution. 

Proportion 1 If X ~ N(/i, E),  then  CX ~ N(Cft CEC). 

then 
Proposition 2 If ( ^ ) ~ N (®  >  [ E^    %2) 

i)    X.   ~   N^ , X^), i=l, 2; 

ii)   (X11 X2)  ~ N(/i! + S12E22 (X2~^)'   Ell ~ E12E22E2l) ' if % 

nonsingular. 

Proposition 3 If X is a p-vector and (X | <j>)  ~ N(/i, tf~   E), 

^   ^   G(fi,   -)   i-e. (^ is a gamma random variable with shape parameter ^ 

and scale parameter •*,     then 

i)    {4> | X=x)   ~  G(*£,    *£)    with n* = n+p and  d* - d-Kx-^'XT1^ -/i); 

ii)    X ~ Tn (/i,    | E). 
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Al.   Derive the inference and forecasting formulae of Yj. 

Recall the model form for series 1 

r^i.t = Ft *i,t + ui,t 

h,t = Gt öi,t-i+ wi,t- 

(A.1) 

From the second equation follows 

*l,t     =  GtGt-l ••• G1Ö1,0 + Gt ••• G2 wl,l + Gt ••• G3 wl,2 + ■•• + wl,t 

= [Gt-G1,Gt-G2,-1I,0,-,0] 4, fort=l, 2, ... , n, and 

elfi = [i, o,..., o] 4, 

where 4> = [^Q W'M ••■ w'ln]'.  Thus, 6X - [8[fi ^ - *i>n]' = L 4 with 

L = 

Gl 

G2G1 

I 

Go 

Gn-Gi   Gn-G2   Gn-G3-I 

And from the first equation of (A.l) follows 

Yi t= LJLuJL Ft ° •'• °3 ei + ut    for t=1' - n 

t 0's 
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Therefore Yx n = F' S1 + ?1    = F'L 4> + uln with 

F' = 

0 I", 

0 F'0 

0 F'o 

o     F; 

Under scenario A, i.e., (<f> | y)  ~ N(/i, £), uln ~ N(0, Uln), and {u1>t} {w1?t} are independent 

sequences, applying proposition 1 yields 

el 
m01 

Yi1) u ~N myi.i 
) 

Y!2) m
yi.2 

_ . _ 

^i      *iyi.i     9in.2 

cyLi*i Cyi.i       Cyi.i2 

cyi.2öi Cyi.2i     Cyi.2 

where m(i = L^, K1.i
nV'l.2)'=  F'L'''   <Vl.l    = S.l'l' 

V,= Vic'i = 1"' 'V, c«fl,»= tu'F 

^1.1        Cy1.12 

' Cy1.21      CyL2 

F'LEL'F  +   U l,n 
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The above one is the prior joint distribution of &l and Y1>n-  Then, applying proposition 2 to the 

joint distribution, we obtain the conditional distribution of Gy and Y^ given observations 

vi1} = Yl,t = (vl,l> -' VM 

An       \ / Cfl C, 

W^~'WJ- u;;,,t2 

where m^       =  m^        +  C^^ (CyL1)"   (?l,t     myL1)' 

m„        =  m +  ^l^l/1^'^!.^ v1.2   "      v1.2     T     y1.21 

( V* Cyi-2   j Hc^iCyi.2)- \cn.2i) cyiA%.ih «W* 

In particular, the joint predictive distribution of Y^ given observations y^ is a multivariate 

normal specified by 

(Yl2)|y0.yi,t) ~ N(ÄyL2'So- 

under scenario B, i.e. (*|y0> U) ~ N(* US), (ux | U) ~ N(0, UU^), given U 

sequences {u1>t} and {wljt} are independent, (U | y„) ~ IG (^ , -^) then' similar to the 

above case, we have 
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r - r r ■ 

»1 
m9l 

Y[l) 
y0>u ~N myi.i 

,u 

Y12) m
yi.2 

. . 

ch    Vi.i  c°m.2 

Vi.i^i^i.i    cyi. 12 

Sl^i^l^l      Cyl-2 

el 
me1 

Y[l) yo ~ Tni,o myi.i 

dl,0 
'  nl,0 

Y[2) 
myi.2 

ch     V1.1 chn.2 

=r!ö   cyi.iöi ^i-i   ^i- 12 

cyi.2öi Cyi-2i Cyi.2 

where all submatrices are specified as the same as under scenario A. 

( 61 - "\ Applying proposition 3 to the distribution of y    ,^.   | U, yQ, yltJ, we obtain 

(uiyo-yi^-^t-T^'-r1)' 

e. 
(Y^|yo-yi,t'u)- 

"W--J VCyi.2*l     Cyl-2 

% 

^1.2 

e, 
( yf2) l?0' yl,t )~ Tn1)t 

d, . / G6, C^iyi.2 'i  \   IM'   "i 
>   n 

^1.2 1,tVcyi.2öi   Cyi.2 

where nlt   =   n1Q + t, dlt   -   d1Q    + dlt , 

di,t = (?i,t - myLi)' ^LI)"
1
 

(yi,t - "W 
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A2.   Derive the inference and forecasting formulae of Y£. 

The model formulating Y£ is 

where 

Y£,t  =  Ft 9l,t  +  u£,t> 

9t,t = H£,t^,t + J£,t *£-l,t + w£,t> 

(A.2) 

H£,t  - 

GS11)    G(12) 

G: (21) r G^ 

'   J£,t   ~ 

0       0 

o   (i-r£) 

G, 
G 

(11)      r(12) 

G 
(21)      r(22) 

partitioned corresponding to 0 t 

*(1t} 

•5' 

I\ is a diagonal matrix with entries taking values between 0 and 1, when £-1, I\ - I. 

From the second equation of model (A.2) turns out 

*£,t     =  H£,f ■ H£,l *£,0  + H£,t • • -H£,2 J£,l *M,1  + • •' + J*,t *M,t 

+ •■• + *, £,t +  H£,t-"H£,2W£,1  +H£,f-H£,3w£,2 

= P£,t---H£,l' H£,f-H£,2J£,l' ••' 'J£,t' °' ••' 0] 9£-l + (H£,f'•H£,l) 8£,0 

+   [H|)t-H||1,H£it-H£j2,-,H£>t.1I,0,-,Ö| 
0 

W £,n 
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Therefore,   0£ = [fy0 , «^ , ■•■ , ^v •■• , ^J' = L£ 6^ + S + M£ 

M* specified as 

L„ = 

H «,1 

H£,2H£,1 

'«,1 

H£,2J£,1 

W £,n 
, with L£, S, 

'£,2 

H£,n-H£,l       H£,n""H«,2J£,l       H£,n "• H£,3J£,2 •"  J£,n 

M/i 

I 

H£,l 
H£,2 H£,l 

H £,2 

H£,n-H£,l        H£,n-H£,2        H£,n-H£,3   - * 

, s = 
H£,l 

H£,2H£,1 

H£,n"H£,l 

B£,0' 

Thus under scenario A, i.e. 

(eniy-Nlm^.C^),   »£,n~
N(0.U£,n)'   ^£,n ~  N(°> W£,J' 

(ö£,0 i ?£-l>  =  (*£-l,oly£-l) + 8£,0'   8£,oisaknownconstantvector' 

{u£ t}, {w£ t} and {6^ | yM} are mutually independent, 

applying proposition 1, we obtain the prior joint distribution 

ch      chn.i   CV£.2 

cyiAh   Cy«-i      Cy«-i2 

C„    a       Cy Cv 

e£ 0£ 

W ?M ~N y£.l 
J 

yf y£,2 

. _ 

^£.2Ö£     ^«-21 yZ-2 

40 



where 

m 
ma   = L«  m« i + s», £   m£-l f "£'   I m. 

C0„  = L£ CM L« +  M« W £,n 
M« , 

.Cv=(Cvu °9'y" y=«v 

V N.21      yC2   / ' 

Applying proposition 2 to above prior joint distribution yields tbe conditional distribution of 6j 

and Y\ ' given observations yj t as 

(^2)I?«-1,^*)~N 

where m/i =     m 

^£.2 y£.2 

*l +  Vo (CyUrl ^.t - "W' 

+ S.21 «W-1 <** " »yu>. 

S       C e
»       "Ö£y£.2 x        /     ^ 91*1.2 \       /   ö«y«.l 

Cy£.2ö£Cy«.2 
Cy£.2*£    S.2 

c 
'y£.21 

cy£.i(cy£.iö£ ^.12)- 
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In particular, we have the following joint predictive distribution: 

0f?)lyM.yi1))~N(fiy|.2'ey«.2)- 

Under scenario B, i.e.    (6^ | y^v U)  ~ N(m£_1, UC^), 

i^n^'Ul)  ~ N(°'  ^.n)'    (*£,nl?£-l'U)  ~ N<°'   UW^' 

(u|y£-i)~iG(^> T$. 

given U sequences {u^J, {w£t> and {e£.lt | y^} are mutually independent, 

we have the following 

tf> 

Y 2) 

Ztr-V   U ~N 

HI/; 

m. 
y£.i 

m. 
y£.2 

, u 

Ch       CV£.l     V£.2 

cye.ieiGyz.i     Cy£.i2 

Cy£.2Ö£Cy«-21       ^L2 

e, 

tf> U-i ~ T n£,0 y£.l 

d£,0 
'     n£,0 

Yf» mv, „ y£.2 

_ . . 

Ch CV£.l   °V«.2 

cy£.i*£ Cy«-i    ^«-12 

Cy£.2^   S.21    S.2 
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/ n£ t   ^£ t\ 
(uiy£-i-y«,t) ~ IG(-r'_2L"J' 

<>,,..")-R,).«U;,,<C 
e, 

yL2h     yt.2 

i \     \t (Ch    V2 

wheie H£t   =  n£0 + t, d£t  =  d£0    + d£t , 

all submatrices are specified as the same as under scenario A. 
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